
Advanced option settings on the command line
docs.openvpn.net/command-line/advanced-option-settings-on-the-command-line

Set the interface and ports for the OpenVPN daemons
In the Admin UI under Server Network Settings there's the option to set the specific
interface that the OpenVPN daemons should listen on. These are the programs that handle
any incoming OpenVPN tunnel connections. This can for example be set to all so that it will
simply listen to all available network interfaces, and usually this is the default. But in some
situations it is desirable to configure the OpenVPN daemons to listen on a specific network
interface only. You can also change the ports that the OpenVPN daemons listen on here,
but we normally recommend not changing these unless there are unique circumstances.

Please note that the OpenVPN daemons and the web services are connected in a way. By
default the OpenVPN Access Server comes configured with OpenVPN daemons that listen
on port 1194 UDP, and OpenVPN daemons that listen on port 443 TCP. While the best
connection for an OpenVPN tunnel is via the UDP port, we implement TCP 443 as a
fallback method. It is likely that if you are on a public network that Internet connectivity is
restricted. But TCP 443 is the port used for HTTPS traffic, and a lot of websites use HTTPS
by default. So by having an OpenVPN TCP daemon on port TCP 443, chances are that
even on such a restricted network your OpenVPN client program will be able to make a
connection to the OpenVPN Access Server using the TCP fallback. It's no guarantee since
some firewalls are quite sophisticated and can see the difference between a web browser
and an OpenVPN client program, but it works on most simple firewalls.

As mentioned, TCP 443 is also used for HTTPS traffic, which the web interface of the
OpenVPN Access Server also uses. You cannot have 2 different processes listening on the
same port on the same server, so we use something we call service forwarding or port
sharing. When you open the web interface of the Access Server on its default TCP port
443, the OpenVPN TCP daemon sees that request and recognizes that it is a browser
request. It then internally redirects the traffic to the web services which are actually running
on port TCP 943. When you change which interface the OpenVPN daemons listen on, you
could be inadvertently denying yourself access via this port forwarding method. The
solution then is to use the port that the web services are actually running on; TCP 943. To
access the web interface at that port put :943 in the URL like so:
https://your.vpnserver.com:943/

Warning: changing these values may mean you have to reinstall your clients in order to be
able to make a connection again, as these settings do not update automatically on the
clients.

To set the interface name that the OpenVPN daemons should listen on:

./sacli --key "vpn.daemon.0.server.ip_address" --value <INTERFACE> ConfigPut

./sacli --key "vpn.daemon.0.listen.ip_address" --value <INTERFACE> ConfigPut

./sacli start

1/11

https://docs.openvpn.net/command-line/advanced-option-settings-on-the-command-line/

To set a specific port for the UDP OpenVPN daemons:

./sacli --key "vpn.server.daemon.udp.port" --value <PORT_NUMBER> ConfigPut

./sacli start

To set a specific port for the TCP OpenVPN daemons:

./sacli --key "vpn.server.daemon.tcp.port" --value <PORT_NUMBER> ConfigPut

./sacli start

To restore the default so it listens to all interfaces and ports TCP 443 and UDP 1194:

./sacli --key "vpn.daemon.0.server.ip_address" --value "all" ConfigPut

./sacli --key "vpn.daemon.0.listen.ip_address" --value "all" ConfigPut

./sacli --key "vpn.server.daemon.udp.port" --value "1194" ConfigPut

./sacli --key "vpn.server.daemon.tcp.port" --value "443" ConfigPut

./sacli start

As an aside, it is not possible to have the OpenVPN UDP daemons and OpenVPN TCP
daemons listen on 2 separate interfaces, they have to listen on the same interface. If you
do want to change this you can use iptables to redirect traffic on a specific port and
interface internally to the correct port and interface.

Disable multi-daemon mode and use only TCP or UDP
Because the OpenVPN 2 code base is single-thread, meaning that an OpenVPN process
can run on only 1 CPU core and doesn't know how to make use of multi-core systems, the
OpenVPN Access Server comes with the ability to launch multiple OpenVPN daemons at
the same time. Ideally there would be one OpenVPN daemon for every CPU core. But
there's more involved. To make it possible for OpenVPN clients to establish a connection
via the UDP protocol and via the TCP protocol, there are additional OpenVPN daemons
necessary. In the case of the OpenVPN Access Server this means we launch 1 TCP and 1
UDP daemon per CPU core. On a system with 4 CPU cores this means there are in total 8
daemons running, 2 per CPU core; 1 TCP and 1 UDP. The Access Server performs a sort
of internal load balancing. When connections come in, the Access Server decides which
CPU core and thus which OpenVPN daemon is least busy, and connects you to that
daemon.

In some rare cases it can be desirable or necessary to turn off multi-daemon mode and
simply launch one TCP or UDP OpenVPN daemon, and handle all incoming OpenVPN
tunnel connections through one single OpenVPN daemon. This is possible but has some
possibly negative side effects. For one, service forwarding is used to field incoming
browser requests on the TCP OpenVPN daemons on port TCP 443, and internally redirect
them to the actual web services port TCP 943 internally. Disabling the TCP OpenVPN
daemons and running with only one UDP daemon means normal access to the web
services has now been blocked and you have to manually type the correct port number in
the URL like so: https://vpn.yourserver.com:943/. Another side effect is that on restrictive
networks where UDP connections are blocked, but TCP 443 (the default HTTPS port) is
still open, then while running only an UDP OpenVPN daemon you could be unable to make
a connection from such a restrictive network, whereas with default settings it would likely

2/11

have worked. And if you decide to use TCP daemons only, then the TCP Meltdown
phenomenon may adversely affect your connection. So in short; the defaults are the best,
but if you want to, you can disable multi-daemon mode.

To disable multi-daemon mode and use only 1 TCP daemon:

./sacli --key "vpn.server.daemon.enable" --value "false" ConfigPut

./sacli --key "vpn.daemon.0.listen.protocol" --value "tcp" ConfigPut

./sacli --key "vpn.server.port_share.enable" --value "true" ConfigPut

./sacli start

To disable multi-daemon mode and use only 1 UDP daemon:

./sacli --key "vpn.server.daemon.enable" --value "false" ConfigPut

./sacli --key "vpn.daemon.0.listen.protocol" --value "udp" ConfigPut

./sacli --key "vpn.server.port_share.enable" --value "false" ConfigPut

./sacli start

Reset multi-daemon mode and number of TCP/UDP
daemons
In the commands below we are using the sacli GetNCores command to get the amount of
CPU cores detected on this system, and then use that to configure the amount of TCP
daemons and amount of UDP daemons to spawn when Access Server starts. The
characters around the ./sacli GetNCores command in the commands shown below are
backticks , not single quotes, and this makes a significant difference in how the command is
executed. We recommend copying and pasting the commands to be sure the commands
are executed properly. We are also resetting the default setting here to use multi-daemon
mode where multiple OpenVPN daemons are launched.

Restore the default of using multi-daemon mode, with the amount of processes same as
CPU cores (recommended):

./sacli --key "vpn.server.daemon.enable" --value "true" ConfigPut

./sacli --key "vpn.daemon.0.listen.protocol" --value "tcp" ConfigPut

./sacli --key "vpn.server.port_share.enable" --value "true" ConfigPut

./sacli --key "vpn.server.daemon.tcp.n_daemons" --value "`./sacli GetNCores`"

ConfigPut

./sacli --key "vpn.server.daemon.udp.n_daemons" --value "`./sacli GetNCores`"

ConfigPut

./sacli start

Reset OpenVPN web services and daemons to defaults
Aside from offering you the chance to undo any wrong settings that have accidentally
locked out of access to the web services, these steps are also vital when you have
restored a backup of an OpenVPN Access Server configuration from one system to another
system, and the interface names that were on the old server are not the same as the new
server. If for example on the old server you have it configured to listen only to eth0, but the
new server only has ens192, then you have a problem since the Access Server will be
unreachable and you can't access the Admin UI to correct these settings. With the

3/11

https://docs.openvpn.net/commonly-asked-technical-questions/#What_is_TCP_Meltdown

commands below these settings related to interface names and such are all reset to "all",
meaning that the OpenVPN Access Server will simply listen to all available interfaces, and
at the default ports (TCP 443, TCP 943, UDP 1194).

Reset web services, service forwarding, and OpenVPN daemons to default ports and listen
on all interfaces:

./sacli --key "admin_ui.https.ip_address" --value "all" ConfigPut

./sacli --key "admin_ui.https.port" --value "943" ConfigPut

./sacli --key "cs.https.ip_address" --value "all" ConfigPut

./sacli --key "cs.https.port" --value "943" ConfigPut

./sacli --key "vpn.server.port_share.enable" --value "true" ConfigPut

./sacli --key "vpn.server.port_share.service" --value "admin+client" ConfigPut

./sacli --key "vpn.daemon.0.server.ip_address" --value "all" ConfigPut

./sacli --key "vpn.daemon.0.listen.ip_address" --value "all" ConfigPut

./sacli --key "vpn.server.daemon.udp.port" --value "1194" ConfigPut

./sacli --key "vpn.server.daemon.tcp.port" --value "443" ConfigPut

./sacli start

You can also instead choose to specify IP address to listen on instead of "all", in case you
want to set this manually.

XML-RPC interface
The OpenVPN Access Server uses XML-RPC internally between web services and core
component, and between OpenVPN Connect Client for Windows and Macintosh, and the
XML-RPC interface on the web services (at /RPC2 URL). On the OpenVPN Connect Client
it is only used in a limited fashion to check credentials to see if they are valid, and to obtain
a user-locked profile for connecting, when the Connect Client is using a server-locked
profile. If the XML-RPC interface setting is changed to full support, either in the Client
Settings page in the Admin UI, or via the command line with the configuration option
shown below, then the Access Server can be fully remotely controlled using XML-RPC calls
instead. Authentication is done via HTTP basic authentication over a secure SSL
connection. To retrieve a user-locked profile a standard user's credentials are sufficient, but
for other functions only an admin user's credentials are sufficient.

We do not provide documentation or support for the XML-RPC interface.

However, we can give you the tools to determine what calls to make and how, and you can
use that information to use or make XML-RPC capable programs that can remotely control
the Access Server.

To see XML-RPC calls on the command line with the sacli VPNSummary function:

OPENVPN_AS_DEBUG_XML=1 ./sacli VPNSummary

You will get a result which shows the XML query, and the response. This system of getting
information works for pretty much every sacli function. And sacli controls just about
everything that the Access Server can do.

To change the XML-RPC function support:

4/11

./sacli --key "xmlrpc.relay_level" --value <NUMBER> ConfigPut

./sacli start

Where <NUMBER> is:

0 - disable the XML-RPC API via web services entirely, and will break server-locked
profile type connections.
1 - enable XML-RPC API via web services in a limited fashion, for server-locked
profile type connections only (default).
2 - fully enable XML-RPC API via web services, allows full remote control of the
Access Server's function.

Logging of XML-RPC API calls is by default not enabled, but can be enabled with an XML-
RPC debug flag.

Limit total maximum amount of VPN tunnels
By default the Access Server allows 2048 VPN tunnels on a single installation of Access
Server. This is normally enough, but if you want to, you can increase that limit. Please note
that if you change this value, even a warm restart of Access Server will restart the
OpenVPN daemons, meaning all your VPN clients get kicked off and they will need to
reestablish their connection, which should happen automatically.

Change maximum amount of active incoming VPN tunnels:

./sacli --key "vpn.server.max_clients" --value <NUMBER> ConfigPut

./sacli start

Where <NUMBER> is the maximum amount of connected VPN tunnels. This configuration
key by default is not present in Access Server, and when it is not present, it will be
assumed to be 2048. It can be set to any valid number of your choice.

UCARP/VRRP failover advanced settings
When the built-in failover mode of the Access Server is configured and in use, the primary
node will send out heartbeat signals onto the local network. The secondary node monitors
these heartbeat signals, and if it fails, takes over the tasks from the failed node. But if
multiple such pairs are active on the same network, or if other systems also use
UCARP/VRRP for automatic failover, then the system needs a way to differentiate the
signals. This is done with a VHID which is a unique number embedded in the heartbeat
signals. Each failover pair needs its own ID. By default this number is 94 on an Access
Server failover pair. To adjust it to another number adjust the value of the ucarp.vhid
configuration key with the command below, but beware that you should follow the steps
carefully as described below for both nodes, and that this will lead to having to restart the
Access Server service on each node in turn, causing a total of 2 failover events. So plan
this appropriately.

On the primary node adjust the VHID:

5/11

https://docs.openvpn.net/logging-and-debug-flag-options-for-access-server/#LOG_DB_XML_API_VERBOSE1

./sacli --key "ucarp.vhid" --value <NUMBER> ConfigPut

service openvpnas restart

Where is a number from 1 to 255.

Now wait a full minute. This is to ensure that the primary node has had a chance to create a
new configuration backup file and to relay it to the secondary node. There will now be a
brief moment where both nodes try to be the master node, as each does not see the other
anymore due to the mismatched VHID number.

Now go to the secondary node and restart the Access Server service:

service openvpnas restart

The primary node should now come back online properly and the secondary node should
now be in standby mode again.

Finally, for advanced users, it is possible to pass additional parameters to the UCARP
process. This is done with the ucarp.extra_parms configuration key. See the command
below on how to pass extra parameters to the UCARP process that Access Server
manages. Please note that changing this will result in a failover event and you will then
have to restart the Access Server service on the secondary node as well to ensure it goes
back the primary node.

Define extra parameters for Access Server to pass to UCARP:

./sacli --key "ucarp.extra_parms" --value <PARAMETERS> ConfigPut

service openvpnas restart

Where is a string of text that contains what you want to pass to UCARP.

If for example you want to override the standard scripts that OpenVPN Access Server uses
for when the node becomes active or has to be a standby node, then you can do so by
passing new --upscript and --downscript parameters directly to UCARP, and specifying
new scripts instead. You could for example copy the original ucarp_standby and
ucarp_active up/down scripts in the /usr/local/openvpn_as/scripts/ directory and edit
them to suit your needs. It is of course possible to edit the scripts directly but that would
mean during an upgrade or reinstallation that these scripts are reset to standard. Using the
method described to create your own copies of the up/down scripts that you can customize
is the better method if you want to customize these up/down scripts.

Override up/down scripts with new scripts (make sure to create them of course):

./sacli --key "ucarp.extra_parms" --value "--upscript /root/up --downscript

/root/down" ConfigPut

service openvpnas restart

And to revert to the default scripts:

./sacli --key "ucarp.extra_parms" ConfigDel

service openvpnas restart

6/11

Global NAT behavior setting
Since private IP addresses cannot be routed on the Internet, when VPN clients are
connected to the Access Server and have been given instructions to send traffic for public
IP addresses through the VPN server, the Access Server will choose the network interface
with the default gateway on it and NAT traffic out through there. In some cases it is
desirable to disable this NAT behavior, for example when you wish to implement a firewall
system that logs the VPN clients private IP addresses as the traffic passes from the VPN
client, through the VPN server, through the firewall, and then goes to the Internet. The NAT
behavior can then be implemented further on in the connection chain before it goes onto
the public Internet. This is a global setting that applies to the entire server for outgoing
traffic through NAT. It is possible to disable this setting, or to specify a different IP address
to use for outgoing NAT, or even a range of addresses that will be randomly selected for
outgoing NAT operations. It is impossible to bind a specific public IP for outgoing NAT
operations to a specific VPN client.

Disable NAT for outgoing public traffic (enabled by default):

./sacli --key "vpn.server.nat" --value "false" ConfigPut

./sacli start

Re-enable NAT (restore default):

./sacli --key "vpn.server.nat" ConfigDel

./sacli start

Specify interface/address for outgoing NAT:

./sacli --key "vpn.server.routing.snat_source.N" <INTERFACE-ADDRESS>

./sacli start

Where N is a number starting from 0 and logically increments, for multiple definitions.
And where INTERFACE-ADDRESS is one of the following:

interface:address - Source NAT traffic using IP address of a specified interface
name.
interface:number - Source NAT using IP address of alias number of specified
interface name.
interface:begin-range:end-range - Source NAT traffic at random using range of IP
addresses.

The randomization of that last option is done using the Linux/Netfilter to-source algorithm. It
is of course required that the interfaces and IP addresses you intend to use are actually
available and configured on your system and are by themselves working properly.
Examples of specifying the interface and address for outgoing NAT are given below.

For example NAT eth2 traffic via 1.2.3.4:

./sacli --key "vpn.server.routing.snat_source.0" --value "eth2:1.2.3.4" ConfigPut

./sacli start

Or NAT eth0 traffic via the eth0:4 address:
7/11

./sacli --key "vpn.server.routing.snat_source.0" --value "eth0:4" ConfigPut

./sacli start

Or NAT ens192 traffic using a range of public IPs from 76.49.27.18 to 76.49.27.22:

./sacli --key "vpn.server.routing.snat_source.0" --value

"ens192:76.49.27.18:76.49.27.22" ConfigPut

./sacli start

Multiple rules can be specified for multiple interfaces, for example:

./sacli --key "vpn.server.routing.snat_source.0" --value

"eth0:76.49.27.18:76.49.27.22" ConfigPut

./sacli --key "vpn.server.routing.snat_source.1" --value "eth1:3" ConfigPut

./sacli start

Settings related to iptables
The Access Server makes heavy use of Linux iptables to enable NAT functionality and
enforce VPN-level access control rules, however it also tries to play well with other
applications that use iptables by maintaining its own chains and making minimal additions
to standard chains such as INPUT, OUTPUT, and FORWARD. By default, the Access
Server prepends to standard chains, and this remains the default. Prepending means it
tries to come first in an existing list of iptables settings, to ensure Access Server works
properly. However by using the following config key, this behavior can be changed to
append, to make it easier to develop custom rules which take priority over Access Server-
generated rules.

To make Access Server add rules after existing ones (append instead of prepend):

./sacli --key "iptables.append" --value "True" ConfigPut

./sacli start

Restore default behavior:

./sacli --key "iptables.append" ConfigDel

./sacli start

It is also possible to completely disable Access Server's activities in regards to iptables.
However, this may lead to insecure situations as traffic may be allowed through that you
didn't give permission for, and things may then simply not function as intended anymore.
Disabling iptables means you're taking away one of the pillars on which the Access Server
functionality is based and you are then expected to take care of the required actions in
iptables yourself. If you do not, the Access Server will likely just completely fail to function.
We do not recommend disabling Access Server managing the iptables settings. But if you
must, for whatever reason, and you have the required knowledge to get things working,
then the option is available. There are 3 distinct iptables items that Access Server manages
and these that are all enabled by default, but can optionally be disabled:

iptables.vpn.disable.filter
iptables.vpn.disable.nat
iptables.vpn.disable.mangle

8/11

Example for disabling one of the three above settings:

./sacli --key "iptables.vpn.disable.filter" --value "True" ConfigPut

./sacli start

Restoring the value to its default:

./sacli --key "iptables.vpn.disable.filter" ConfigDel

./sacli start

Choosing Layer 3 (routing) or Layer 2 (bridging)
Before we explain this setting further, we want to make it clear that layer 2 VPN mode or
bridging is not a recommended method of using OpenVPN Access Server, and you may
encounter problems with it that are related to MAC address spoofing or promiscuous mode
which are security related settings in hardware and software that may need to be adjusted
or enabled in order for this to work at all. We also want to warn you that using bridging
mode disables a lot of the functionality of the Access Server because it simply does not
apply anymore. In layer 3 mode, the recommended mode, the Access Server functions as
a router with firewall functions built-in to ensure traffic can't go to places it shouldn't be able
to go. But with layer 2, you're basically turning the Access Server into a software-based
network switch with encryption where all connected VPN clients can communicate freely
with each other and the network the Access Server is attached to. There's no control here
over what traffic is allowed to go where, and the Access Server also plays no role in
assigning IP addresses or specific access rules to the VPN clients. In other words, if you
don't know what you're doing, do not use this mode and stick to the default Layer 3 routing
mode, please.

To learn about what Layer 3 and Layer 2 means see our short explanation on what the OSI
Layer model is.

The configuration parameter vpn.general.osi_layer controls the behavior of the Access
Server. It can operate on Layer 2 in bridging mode, and in Layer 3 in routing mode (the
default). In the past, in Access Server versions older than version 2.5, it was possible to set
this option in the Admin UI, but we have since hidden this option further to prevent people
from trying it out accidentally, as it is a very advanced feature and likely to cause the
product to appear not to function anymore, unless you know what you're doing. But the
option for Layer 2 bridging mode can still be enabled.

Switch to Layer 2 bridging mode:

./sacli --key "vpn.general.osi_layer" --value "2" ConfigPut

./sacli start

Restore to Layer 3 routing mode:

./sacli -key "vpn.general.osi_layer" ConfigDel

./sacli start

If you had Access Server installed and operating on Layer 2 bridging mode already, and
you have just upgraded your Access Server to the latest version, this setting will remain

9/11

https://docs.openvpn.net/commonly-asked-technical-questions/#What_is_the_OSI_Layer_model

intact and your server will continue to function in Layer 2 bridging mode. So an upgrade will
not break this functionality.

If you had all your VPN clients installed and operating on Layer 3 routing mode already,
and you now switch your server to Layer 2 bridging mode, any VPN clients that have a
stored copy of the user-locked or auto-login type connection profiles will need to obtain a
new copy of the connection profile before they are able to successfully connect again.

The most common problems we encounter with Layer 2 are that the VPN client does not
get an IP address assigned. The most common reason for this is that you now need a
DHCP server running either on the Access Server itself or on the network that the Access
Server is connected to (but not both at the same time), and that either such a DHCP server
does not exist, or is unreachable because the network or the device that the DHCP server
runs on has a security feature that is called MAC address spoofing or promiscuous mode
set to a safe level. These terms both describe the same idea, where a single computer, in
this case the Access Server, pretends to be multiple systems at the same time, which
makes sense in this case, because it tries to handle traffic for multiple VPN clients that all
want connectivity to the connected network. On virtual platforms like ESXi or HyperV you
may need to look into these settings on the virtual switch and allow this type of behavior on
the network before Layer 2 bridging mode can function.

Please note that due to the added complexity of implementing Layer 2 bridging mode
where external equipment is usually the cause of the problem, we may not be able to offer
you adequate support in resolving this issue. We can only ensure the Access Server and
the OpenVPN clients can make a connection, but IP addressing and traffic transmission
issues that pass the boundary where Access Server connects to your network, and doesn't
function from there on, is not something we can resolve from our end.

Allow UDP multicast and IGMP to pass through
By default in Layer 3 routed mode, which is what the Access Server uses normally, all
traffic is unicast. That means that only traffic that has a specific destination IP address will
be allowed to pass through the VPN server. Multicast traffic, or broadcast traffic that has a
to-whom-it-may-concern characteristic, is blocked. It is possible to lift the restriction on UDP
multicast packets and IGMP packets, so that these pass freely between VPN clients and
the VPN server. Some software programs use these to auto-detect systems or services on
the network, and so this option may be useful in such a situation.

The configuration key vpn.routing.allow_mcast allows this traffic to pass through. It is
disabled by default.

Enable UDP multicast and IGMP traffic passthrough:

./sacli --key "vpn.routing.allow_mcast" --value "true" ConfigPut

./sacli start

Restore the default setting:

./sacli --key "vpn.routing.allow_mcast" ConfigDel

./sacli start
10/11

This setting implements these iptables rules on the VPN server, which is what allows the
traffic to pass through:

ACCEPT udp -- anywhere base-address.mcast.net/4 udp

ACCEPT igmp -- anywhere anywhere

ACCEPT udp -- anywhere base-address.mcast.net/4 udp

ACCEPT igmp -- anywhere anywhere

11/11

	Advanced option settings on the command line
	Set the interface and ports for the OpenVPN daemons
	Disable multi-daemon mode and use only TCP or UDP
	Reset multi-daemon mode and number of TCP/UDP daemons
	Reset OpenVPN web services and daemons to defaults
	XML-RPC interface
	Limit total maximum amount of VPN tunnels
	UCARP/VRRP failover advanced settings
	Global NAT behavior setting
	Settings related to iptables
	Choosing Layer 3 (routing) or Layer 2 (bridging)
	Allow UDP multicast and IGMP to pass through

